Открыт универсальный закон хаоса: Как квантовые вихри в гелии стали ключом к пониманию турбулентности
Перемешайте ложкой чай, взгляните на клубящиеся облака или представьте себе рёв реактивного двигателя. Во всех этих явлениях, сколь бы разными они ни казались, правит один и тот же неуловимый и сложный феномен — турбулентность. Физики десятилетиями бьются над тем, чтобы полностью описать этот хаотичный танец вихрей, ведь он определяет всё: от погоды на планете до эффективности самолётных крыльев. И вот, чтобы разгадать эту вселенскую загадку, учёным пришлось обратиться к одному из самых странных веществ во Вселенной — сверхтекучему гелию.
Недавнее исследование международной группы учёных, включая специалистов из США, Великобритании и Франции, пролило свет на фундаментальные законы, управляющие этим хаосом. И сделали они это, наблюдая за поведением микроскопических «торнадо» в жидкости, охлаждённой почти до абсолютного нуля.
Идеальная лаборатория в капле гелия
Представьте себе жидкость, которая не знает, что такое трение. Она течёт вечно, не замедляясь, и способна сама по себе взбираться по стенкам сосуда, словно бросая вызов гравитации. Это не научная фантастика, а реальность сверхтекучего гелия — состояния, в которое гелий переходит при температуре ниже -271 °C.
Но главная его ценность для учёных не в этих экзотических свойствах. В отличие от воды или воздуха, где вихри могут возникать и исчезать самым причудливым образом, в сверхтекучем гелии всё вращение строго упорядочено. Оно может существовать только в виде так называемых квантованных вихрей.
Что это значит? Проще говоря, жидкость не может вращаться как попало. Вращение происходит строго отмеренными «порциями», сосредоточенными в тончайших нитях, похожих на микроскопические смерчи. Каждый такой вихрь — это стабильная, почти вечная структура, несущая в себе минимально возможный «заряд» вращения, предписанный законами квантовой механики. Как объясняет профессор Вэй Го, один из авторов работы, эти вихри «топологически защищены», что делает их невероятно устойчивыми и удобными для наблюдения.
Именно эта предсказуемость превратила сверхтекучий гелий в идеальную «песочницу» для изучения турбулентности. Вместо того чтобы пытаться уследить за хаосом в обычном потоке воздуха, учёные смогли наблюдать за поведением отдельных, чётко определённых вихрей.
Увидеть невидимое и понять необратимое
Как же заглянуть в этот квантовый мир? Вихри сами по себе невидимы. Чтобы их отследить, команда исследователей применила изящный метод: они ввели в сверхтекучий гелий крошечные замороженные частицы дейтерия (тяжёлого водорода). Эти частицы, словно пылинки в солнечном луче, попали в ловушку вихрей и сделали их видимыми. Направив на них плоский лазерный луч и снимая происходящее на высокоскоростную камеру, учёные смогли в деталях зафиксировать балет этих квантовых торнадо.
Именно здесь их ждало главное открытие. Когда два таких вихря сталкивались и «пересоединялись» — то есть разрывались и образовывали новые связи, — происходило нечто удивительное.
После столкновения вихри всегда разлетались друг от друга быстрее, чем сближались.
Этот, на первый взгляд, простой факт имеет колоссальное значение. Он говорит о том, что процесс необратим. Это похоже на то, как если бы два бильярдных шара после столкновения не просто отскочили, а приобрели дополнительный импульс, взявшийся словно из ниоткуда. Разумеется, энергия из ниоткуда не берётся. Оказалось, что в момент пересоединения часть энергии, заключённой в самой структуре вихревых линий, высвобождается в виде резкого всплеска, который и разгоняет их.
Это явление, названное временной асимметрией, оказалось универсальным законом. Оно описывает фундаментальный механизм того, как энергия передаётся и рассеивается в текучих средах — и неважно, говорим мы о ледяном гелии или о горячем воздухе в турбине.
От квантового мира к гулу реактивного двигателя
Какое отношение эти микроскопические квантовые эффекты имеют к нашему повседневному миру? Самое прямое. Хотя сами квантованные вихри существуют лишь в экзотических условиях, физические принципы их взаимодействия — столкновения, пересоединения и высвобождения энергии — оказались общими для всех жидкостей и газов.
Турбулентность в классическом мире — это, по сути, сложнейшая сеть из множества таких взаимодействующих вихрей разного масштаба. Понимание того, как энергия каскадом передаётся от больших завихрений к малым на самом фундаментальном уровне, открывает невероятные перспективы.
- Инженерия: Это знание однажды может помочь в создании более эффективных и тихих реактивных двигателей, более производительных турбин для электростанций или даже в проектировании корпусов судов, испытывающих меньшее сопротивление воды.
- Прогнозирование: Улучшенные модели турбулентности способны повысить точность прогнозов погоды и климатических моделей, ведь атмосферные и океанские течения — это турбулентность в чистом виде.
- Фундаментальная наука: Это исследование — прекрасный пример того, как изучение одного, казалось бы, узкоспециализированного явления соединяет совершенно разные области физики: от квантовой механики до гидродинамики.
Работа международной команды учёных показала, что иногда для решения самых больших и сложных проблем нужно взглянуть на самые малые и простые системы. Изучая предсказуемый и упорядоченный танец квантовых торнадо, мы получаем ключ к пониманию всеобъемлющего и могущественного хаоса, который формирует мир вокруг нас.











