Лента новостей

15:27
«Евроинтеграция» по кускам
15:15
Япония намерена забрать у России Курильские острова и заключить мирный договор
15:14
Боррель сожалеет, что конфликт на Украине завершится без финансирования Западом
15:06
Путин подписал закон о налогообложении криптовалюты
14:36
Израиль рассчитывает, что США накажут МУС
14:34
Планы НАТО по развалу России: новый факт
14:30
Новые антисанкционные смартфоны Huawei ждёт провал — Mate 70 не впечатлили пользователей
14:26
Сводка Минобороны России о ходе проведения спецоперации с 23 по 29 ноября
14:23
Путин заявил, что Россия может нанести удар по центрам принятия решений в Киеве
14:08
Южнокорейский флот усилился эсминцем нового поколения
14:05
Орешник похоронил мечты Зеленского - Новости
14:01
Юрий Подоляка: последнее видео, обзор событий на фронтах специальной военной операции от 29 ноября 2024 года
13:37
Associated Press: солдаты ВСУ не подчиняются приказам и массово бегут с поля боя
13:36
Институт изучения войны: Россия заставила Запад играть по своим правилам
13:29
СВР: ФРГ хочет создать на Украине зондеркоманды из националистов
13:12
Тайны литиевых батарей: каково их устройство, почему они боятся холода и не любят разряжаться в ноль
13:02
Как можно увеличить количество самолетов РЭБ в российской авиации
12:44
К итогам государственного визита Владимира Путина в Республику Казахстан
12:41
Главу Футбольной ассоциации Брунея уволили после матча с Россией
12:25
Последние новости СВО: обзор боевых действий на Украине к 29 ноября 2024 года
12:01
СВР РФ: Запад планирует отправить на Украину 100 тыс. «миротворцев»
12:00
Орбан опасается эскалации конфликта из-за присутствия на Украине солдат США и Франции
11:55
НАТО-лайт, или ОБСЕ как ещё один инструмент западной экспансии
11:52
FT: на Украине перенесли в другое место заседания Верховной рады из-за «Орешника»
11:50
Министр обороны РФ Белоусов прибыл в КНДР с официальным визитом
11:46
Встреча Министра обороны Российской Федерации Андрея Белоусова с министром обороны Корейской Народно-Демократической Республики генералом армии Но Гван Чхолем
11:38
Война на Украине (29.11.24): Обзор ситуации на фронте...
11:06
В США хотят создать «Манхэттенский проект» искусственного интеллекта
10:55
Специальная военная операция ВС РФ и события на Украине 29 ноября, день
10:47
Юрий Подоляка: штурм Часова Яра и битва за трассу Курахово–Запорожье, что происходит на ключевых участках фронта 29.11.2024
10:42
Сильный ИИ — пока утопия: специалист объяснил, почему подобная человеку нейросеть не появится в ближайшие 20 лет
10:37
У готовки в аэрогриле выявили преимущество для здоровья, не связанное с едой
10:21
В Грузии прозападные активисты устроили беспорядки после решения правительства отложить переговоры о сближении с ЕС
09:59
Применение Россией «Орешника» и вторая волна мобилизации: контрактники обеспечивают потребности армии
09:56
В «Ростехе» создали отечественный клей для электроники военного назначения
09:52
«Аналогов в мире, конечно, нет»: Путин раскрыл подробности работы «Орешника»
09:51
«Здесь кисть приравняли к штыку»: Минобороны РФ запустило онлайн-раздел о Студии военных художников имени Грекова
09:32
Борис Джонсон признался, что Запад ведёт войну против России руками украинцев
09:31
Около 50 украинских беспилотников атаковали Россию
09:21
СВО. Донбасс. Оперативная лента за 29.11.2024
09:18
Почти полуночный экспресс: правда ли, что американцы спешат передать Киеву ядерное оружие, и зачем
09:11
Украинцы бегут в Чернобыль - Новости
09:07
Ситуация на Курском фронте: ВС РФ отражают атаки и продвигаются вперед
08:49
Международные уголовники
08:27
Раскрыты планы США по обновлению ядерного оружия
Все новости

Архив публикаций



Мировое обозрение»Технологии»Сильный ИИ — пока утопия: специалист объяснил, почему подобная человеку нейросеть не появится в ближайшие 20 лет

Сильный ИИ — пока утопия: специалист объяснил, почему подобная человеку нейросеть не появится в ближайшие 20 лет


Математические расчёты нейросетей всегда верны. Однако людей часто не устраивают результаты этих вычислений — тогда говорится об ошибках ИИ. Больше всего этой проблеме подвержены большие языковые модели (large language model, LLM), такие как ChatGPT. Кроме того, их работа требует огромных затрат электроэнергии. Об этом в интервью RT рассказал доктор технических наук генеральный директор Smart Engines Владимир Арлазаров. По словам специалиста, ажиотаж вокруг LLM может смениться разочарованием, и тогда из отрасли начнётся отток инвестиций, как это было в 1970-е, во время первой «зимы искусственного интеллекта». Завышенные ожидания от ИИ могут сослужить технологии плохую службу. При этом прикладные, «скучные» нейросети могут значительно улучшить повседневную жизнь людей.
Сильный ИИ — пока утопия: специалист объяснил, почему подобная человеку нейросеть не появится в ближайшие 20 лет
  • Gettyimages.ru
  • © gorodenkoff

— Генеративные нейросети «врут» почти в 60% случаев. Это выявил новый бенчмарк (тестировщик) SimpleQA компании OpenAI. Как показало тестирование, даже самые передовые модели демонстрируют крайне низкие показатели успешности. Ошибки какого рода чаще всего допускают нейросети?

— Начну с того, что генеративные нейросети и большие языковые модели (large language model, LLM) — это не одно и то же. Здесь речь идёт именно о LLM, ярким примером такой нейросети является ChatGPT.

Большие языковые модели оперируют последовательностями слов. На любой вопрос они должны дать ответ, любой — проверить его достоверность они не могут, поскольку не обладают полнотой знаний о мире, какая есть у человека. Задача лингвистических моделей не дать правдивый ответ, а выстроить согласованную цепочку слов и фраз. Данные рассматриваются не с точки зрения соответствия нашей, человеческой истине, а как кирпичики для создания внешне связного текста. То есть, воспроизводится не суть и содержание речи, а её внешняя форма.

Так что если какие-то типы нейросетей станут прародителями так называемого генерального, или сильного искусственного интеллекта, то это будут, скорее всего, не LLM.

И при этом именно LLM стали объектом ажиотажного интереса в последнее время. Несколько лет назад даже сообщалось о появлении целого культа ИИ, подобного квазирелигии, её основал бывший сотрудник Google Энтони Левандовски. Хотя это то же самое, что поклоняться квадратному уравнению.

  • ChatGPT
  • Gettyimages.ru
  • © Silas Stein / picture alliance

— А как тогда обстоят дела с ошибками в случае нейросетей других типов, не LLM?

— Это то же самое, что спрашивать, как часто ошибаются люди. Нейросетей великое множество, у каждой своя статистика ошибок. Для каждой решаемой нейросетью задачи создается бенчмарк — программа для проверки корректности её работы. И всё равно нейросети ошибаются. Например, так было с распознаванием автомобильных номеров. Тесты показывали 100% эффективность нейросети, а в реальных условиях оказалось, что она не работает. Конечно, потом это исправили, но пример показательный, он говорит о том, что бенчмарки не всегда могут оценить правильно работу нейросети.

Также по теме
«Нужен аудит систем ИИ»: IT-специалист — о проблемах и выгодах внедрения технологий искусственного интеллекта
Технологии искусственного интеллекта могут стать инструментом контроля за людьми, если для этой сферы не будут созданы правовые рамки....

— Какие типы нейросетей сегодня существуют, на каких принципах они основаны?

— Сразу скажу, что сегодня чуть не ежедневно появляется множество новых нейросетей, так что какой-то чёткой классификации нет. Условно все нейросети можно разделить на те, что работают с одним объектом, и те, которые могут работать с их последовательностью — это, в частности, LLM, поскольку язык является последовательностью знаков.

Принцип работы классических нейросетей основан на теореме универсального приближения (аппроксимации). В математике аппроксимацией называют замену одних объектов другими, близкими к исходным. Заданные, известные точки функции — узлы, позволяют высчитать недостающие значения. Чем больше узлов и чем проще функция, тем быстрее и точнее производится расчёт. Разновидностей же архитектур нейросетей много, есть свёрточные, есть рекуррентные и т. д. Это уже математические тонкости, понятные специалистам. Суть в том, что под разные задачи применяются разные нейросетевые архитектуры.

  • Человеческий мозг
  • Gettyimages.ru
  • © SEBASTIAN KAULITZKI / SCIENCE PHOTO LIBRARY

Фактически, нейросеть — это алгоритм с большим набором коэффициентов. Если у вас есть бесконечное множество коэффициентов, выбранных верным образом, вы сможете со стопроцентной точностью решить любую задачу. С конечным набором задача решается уже не так точно. Очень большой рост качества ИИ дало применение математического механизма «внимания» (attention), который позволяет нейросети выделять важное и концентрироваться на нём. У человека этот механизм заложен природой и работает великолепно.

Также по теме
«Подстегнуть людей к развитию»: доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ
Появление сложных нейросетей не приведёт к массовой безработице. Хотя некоторым людям всё же придётся подтянуть свой профессиональный...

Одно из отличий человека, и в целом живого мозга, от нейросети — человек способен делать обобщения на основе очень малого количества примеров. Нейросеть же может этому научиться только на очень большом количестве примеров. Отмечу, что все человеческие понятия, такие как «обобщать», «ошибаться», «запоминать», мы используем только чтобы как-то объяснить неспециалистам работу нейросетей. На самом деле, это просто хороший расчётный алгоритм, у которого нет никаких стремлений и механизмов познания. И он не ошибается — просто нас могут не устраивать результаты расчётов, но сами расчёты всегда математически верны.

— Что можно сделать, чтобы результаты расчётов были более полезными для нас?

— Нужно правильно выстраивать систему обучения нейросети. Кстати, именно из-за дообучения на пользовательских данных порой «портятся» большие языковые модели, начинают выдавать какие-то некорректные с нашей точки зрения ответы. Правда, всё зависит от целей: вообще говоря, такие нейросети, как ChatGPT, не предназначены для решения серьёзных задач. Это просто имитатор общения, забавный, вызывающий большой интерес у людей. Но не более того, не следует ждать от таких нейросетей, что они будут качественно решать какие-то задачи, они изначально создавались не для этого. Вообще, то, что происходит с LLM, очень интересно для социологов, потому что они выступают в качестве нашего зеркала, отражают наши, человеческие интересы и склонности. Для математиков, программистов ничего интересного в этом нет, с самого начала было ясно, что языковые модели будут именно такими.

Дообучение специализированных, а не развлекательных нейросетей, проводится строго специалистами, ни о каком стихийном самообучении тут речи не идёт.

  • Хирургический робот проводит операцию во время Всемирной конференции по искусственному интеллекту 2023 года
  • Gettyimages.ru
  • © VCG / VCG

— То есть, опасения, связанные с внедрением нейросетей в такие области, как медицина, безопасность и т. п., не имеют под собой оснований?

— Здесь мы переходим от технических вопросов к этическим и юридическим. В данном случае важно то, кто будет нести ответственность за ответы нейросети. Потому что, конечно, любые нейросети тоже могут ошибаться — меньше, чем среднестатистический врач, но больше, чем очень хороший и опытный специалист, доктор медицинских наук, например. Какой процент ошибок допустим в таких чувствительных сферах — простых ответов на эти вопросы нет.

Также по теме
«Воспроизводить механизмы работы мозга»: российские учёные — о создании биологического компьютера
Российские учёные из Нижегородского государственного университет им. Н.И. Лобачевского разрабатывают искусственный гиппокамп на основе...

— Возможно, будет правильно, если в случае ошибки медицинской нейросети будет нести ответственность компания-разработчик?

— Отвечу с позиций разработчика, хотя мы занимаемся не медицинской тематикой. Если разработчик соблюдает протокол тестирования, информирует заранее о том, каким будет процент ошибочных ответов, то разве можно считать его виновным? Просто нужно, чтобы результаты нейросети проверялись специалистом. И тогда совместные усилия машины и человека дадут максимально хороший результат. Напомню, что мы не говорим о замене нейросетями медиков, а просто о том, что они станут подспорьем для врачей. Пока что главная проблема в том, что нейросети не умеют обосновывать свои ответы. Если бы система выдавала не просто ответ, есть у пациента рак или нет, а расписывала последовательность «умозаключений», врач мог бы проследить их и заметить где-то фактические или логические несоответствия. Поэтому создание такого ИИ, который мог бы объяснять свои ответы, — одна из ключевых задач, которая стоит сегодня перед учёными. Такие исследования ведутся, определённые результаты есть, но это пока начало пути, конечно.

  • Искусственный интеллект в обучении
  • Gettyimages.ru
  • © CHOLTICHA KRANJUMNONG

— Хотя были опасения, что нейросети вытеснят людей из ряда сфер, пока этого не происходит, поскольку они не могут работать самостоятельно. Не схлопнется ли весь информационный, финансовый пузырь, который раздулся вокруг темы ИИ в последние годы?

— Да, и это не новое явление. Первая «зима искусственного интеллекта», период резкого охлаждения общества к цифровым технологиями наблюдался в 1970-х. Причиной потери интереса и сокращения финансирования стало то, что технология не оправдала изначально завышенные ожидания, когда люди думали, что первые программы решат вообще все задачи. Но, конечно, научные исследования всё равно продолжились, учёные всегда будут заниматься этой темой, потому что она им интересна. Сейчас, из-за ажиотажа вокруг LLM, прежде всего ChatGPT, происходит то же самое, идет новый цикл. Люди думают, что такие нейросети-«болталки» заменят половину специалистов и чуть ли не уподобятся человеку. Это разгоняет инвестиционную активность. Когда эти иллюзии развеются, придёт разочарование и спад интереса. Кстати, в таких компаниях, как Open AI, это понимают, недаром они выпустили новость о большом проценте ошибок нейросетей — пытаются заранее отрезвить общество, чтобы не было потом резкого разочарования.

Также по теме
«Пройти между Сциллой и Харибдой»: российский специалист — о проблемах правового и этического регулирования ИИ
Законотворчество пока отстаёт от темпов развития технологий машинного обучения. Законодателям всех стран только предстоит выработать...

— Какие перспективы развития у нейросетей, какие направления должны стать приоритетными?

— Я считаю, что очень важно заниматься развитием таких нейросетей, которые способны решать прикладные, конкретные задачи. В здравоохранении, автомобилестроении, распознавании документов и т. д., и т. п. Конечно, было бы здорово создать т. н. «сильный» ИИ, который был бы действительно подобен человеку, но это пока утопия — по крайней мере, в перспективе ближайших лет 20. Не надо пытаться играть в Бога, нужно решать насущные проблемы.

Тем более, что у условно универсальных нейросетей, таких как ChatGPT, есть огромный минус — они потребляют колоссальные объёмы энергии. Энергопотребление одной такой программы может быть равно энергетическим затратам небольшого городка. Энергоэффективность современного ИИ чудовищно низкая, это уже становится проблемой. Поэтому говорить о повсеместном внедрении таких систем сложно, у нас просто не хватит для этого электроэнергии, или придётся жертвовать другими сферами. Не говоря уже о создании «сильного» ИИ — он будет потреблять ещё больше энергии, если будет когда-то создан.


Надежда Алексеева


Опубликовано: Мировое обозрение     Источник

Читайте нас:





Напишите ваш комментарий к статье:

Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Новости партнеров

Наверх