Где заканчивается Солнце? Астрофизики впервые визуализировали Альвеновскую поверхность
Где заканчивается Солнце? Для астронома этот вопрос не так прост, как для обывателя. Желтый диск, который мы можем наблюдать через затемненное стекло или на фотографиях из обсерваторий, называется фотосфера. Но это лишь оптическая иллюзия границы. Настоящая физическая граница звезды, отделяющая ее атмосферу (корону) от межпланетного пространства, невидима глазу. Это Альвеновская поверхность.
Долгое время эта граница рассчитывалась лишь теоретически с помощью уравнений. Но теперь, благодаря данным зонда Parker Solar Probe (PSP), Solar Orbiter и спутников у Земли, ученые впервые получили ее динамическую трехмерную карту. Опубликованное в The Astrophysical Journal Letters исследование группы Сэмюэла Бэдмана показывает: наше светило раздувается и меняет форму. И это характерно для всех звезд во Вселенной.
Точка невозврата
Солнечный ветер — это замагниченная плазма. Поток заряженных частиц, который пронизан магнитными силовыми линиями, исходящими от Солнца. Любое возмущение на них (сдвиг, изменение давления) распространяется вдоль линии в виде магнитной волны (альвеновской волны).
Ключевой момент — направление распространения информации. Физически волны распространяются вдоль силовой линии в обе стороны от источника возмущения: и от Солнца, и к Солнцу.
Здесь вступают в конфликт две скорости:
- Скорость потока: с какой скоростью само вещество (плазма) улетает от звезды.
- Скорость волны: с какой скоростью сигнал движется сквозь это вещество.
В ближней зоне (корона): магнитное поле очень сильное, поэтому волны движутся с очень высокой скоростью — тысячи километров в секунду. Сам солнечный ветер здесь еще только разгоняется. В результате скорость волны выше, чем скорость потока. Если в этой зоне происходит событие, сигнал о нем успевает дойти обратно до поверхности звезды против течения. Солнце и эта часть атмосферы находятся в постоянном физическом взаимодействии, это единая электромагнитная система.
В дальней зоне (межпланетное пространство): по мере удаления от Солнца магнитное поле ослабевает (скорость волн падает), а скорость вылета плазмы возрастает. Наступает критический момент — Альвеновская поверхность. В этой точке скорость потока вещества сравнивается со скоростью распространения волн.
За пределами этой границы: поток уносит вещество быстрее, чем волна может двигаться в обратную сторону. Любой сигнал, пытающийся вернуться к Солнцу, сносится потоком прочь. Причинно-следственная связь разрывается: звезда больше не может влиять на структуру этого участка ветра, а ветер не может передать энергию или информацию обратно звезде.
Охота за призрачной сферой
До запуска Parker Solar Probe в 2018 году астрофизики могли лишь гадать, где проходит эта граница. Оценки варьировались от 10 до 20 солнечных радиусов. Зонд Parker был спроектирован именно для того, чтобы нырнуть под эту поверхность, в зону до-альвеновского ветра.
Команда Бэдмана объединила данные с трех точек Солнечной системы:
- Parker Solar Probe: глубокие нырки в корону (менее 15R⊙).
- Solar Orbiter: средняя дистанция (от 0.3 до 1 а.е.).
- L1 (Wind, ACE, DSCOVR): точка Лагранжа у Земли (1 а.е.).
Используя физические модели изополя (комбинация изотермических и политропных процессов охлаждения плазмы), исследователи смогли экстраполировать данные, полученные у Земли и Solar Orbiter, обратно к Солнцу.
Результат этой математической реконструкции совпал с реальными физическими ударами, которые испытал зонд Parker, пересекая границу. Это подтвердило: модель работает.
Что ученые увидели?
Анализ данных за половину 25-го солнечного цикла (с 2018 по 2025 год) выявил три фундаментальных факта об архитектуре нашего светила.
1. Солнце раздувается на пике активности. По мере того как солнечный цикл переходил от минимума к максимуму, Альвеновская поверхность отодвигалась от звезды. Если в спокойном состоянии граница проходит на высоте 10-15 радиусов, то сейчас она выросла до 15-20, а местами и до 25 радиусов. Увеличение высоты составило около 30%. Магнитный каркас звезды расширяется под давлением более мощных потоков плазмы и корональных выбросов.
2. У него форма «мятого мяча». Альвеновская поверхность шершавая и асимметричная. Она покрыта пиками и впадинами, а во время корональных выбросов массы (CME) в ней образуются гигантские временные выступы. Зонд Parker фиксировал моменты, когда он, казалось бы, должен был быть в сверхзвуковом потоке, но внезапно оказывался внутри спокойной зоны из-за того, что граница накрывала его сверху.
3. Тормозной рычаг Вселенной. Это, пожалуй, самый важный физический вывод. Альвеновская поверхность — это длина рычага, с помощью которого солнечный ветер тормозит вращение Солнца. Плазма, улетая, уносит угловой момент. Чем дальше от центра находится точка отрыва (Альвеновский радиус), тем эффективнее этот тормоз. Исследование показало: хотя радиус вырос всего на 30%, потеря углового момента удвоилась (зависимость квадратичная). Солнце на пике активности тормозит свое вращение в два раза интенсивнее, чем в минимуме.
Зачем нам это знать?
Эти данные выходят далеко за пределы физики Солнца.
Экзопланеты и «зоны смерти». Многие красные карлики, такие как TRAPPIST-1, обладают мощными магнитными полями, а их планеты находятся очень близко к звезде. Исследование Бэдмана намекает, что многие из этих планет могут вращаться внутри Альвеновской поверхности своей звезды. Это летальный сценарий для атмосферы: планета подвергается прямой магнитной атаке звезды без защитного буфера сверхзвукового ветра. Понимание того, как меняется Альвеновская поверхность Солнца, позволяет моделировать условия выживания на орбитах других звезд.
История вращения звезд. Зная, как меняется потеря углового момента в течение цикла, мы можем точнее рассчитать, как быстро звезды теряют скорость вращения с возрастом. Это, в свою очередь, позволяет использовать вращение звезды как часы для определения ее возраста (гирохронология).
Взгляд в будущее
Сейчас, когда Солнце проходит пик активности, Parker Solar Probe продолжает свои нырки, подбираясь к рекордной отметке в 9.86 солнечных радиусов. Данные показывают, что несмотря на расширение Альвеновской границы, зонд все чаще и глубже заходит в истинную корону.
Исследование показало, что Солнце нельзя рассматривать как статичный объект с идеальной геометрией. Его магнитная граница — Альвеновская поверхность — постоянно меняет форму и высоту.
Для астрофизики это означает что для точного прогнозирования поведения нашей звезды или оценки условий на экзопланетах, мы больше не можем использовать упрощенные модели сферического ветра. Необходимо учитывать реальную, шероховатую структуру солнечной короны, которую наконец-то удалось измерить напрямую.
Источник:The Astrophysical Journal Letters
Источник: www.flickr.com
















