Лента новостей

15:41
Спяшие - попадание в десятку!
15:29
Астроном НАСА рассказал, почему ученые до сих пор не нашли пришельцев
15:25
National Interest: Америке остаётся лишь наблюдать, как С-400 расходятся по миру
15:24
F-35 - залог мира. Потому что на войне ему делать нечего
15:21
США умирают в конвульсиях. И готовы разнести всю планету
15:20
Почему психует Пентагон
15:19
Гонка вооружений на новых физических принципах
15:16
Россия встряла в сирийский конфликт, чтобы отбить Украину у Запада
15:08
L'Orient-Le Jour: «Прагматическое сотрудничество»
14:39
Порошенко лишил парламент «брони», а михомайдан - главных лозунгов
14:38
Американцы назначат Вакарчука преемником Порошенко
14:37
Медреформа канадской докторши готовит миллионы украинцев к земле
14:36
Пентагон провёл перекличку в Сирии
13:09
Newsweek: «Искандер-М»: пугающее дополнение
13:03
Насильственная депортация как акт гуманизма
12:58
Царем будет Путин
12:43
Скисшие «сливки общества»: Собчак и Сечин в списке антигероев
12:37
Путин считает, что Украина — недогосударство
12:32
У Порошенко патронов осталось — только застрелиться
12:24
РФ обеспокоена возможным вмешательством США в выборы
11:31
Про сыр при социализме и капитализме
11:29
Хорошо ли жили в СССР
11:22
Как правильно использовать труды академика Фоменко?
11:21
Исторический расчёт: почему Россия продала Аляску
11:21
Александр Роджерс: А что там у американцев?
11:20
Путь Симона Петлюры: украинские власти выбрали плохой пример для подражания
11:19
Список «козлов на вынос»: Порошенко, Аваков…
11:18
«Цэ фиаско, браття». Киевский режим довел ситуацию до конфликта с ЕС
11:17
Госдеп подставил Трампа: фронт ан-Нусра применял химическое оружие в Идлибе
11:07
В брехню Гройсмана не верят даже кастрюльки
11:06
Путин: Ельцин сдал все наши ядерные секреты американцам
10:55
Корейская неожиданность: на что способен новый танк Сеула «Черная пантера»
10:52
Путину пришлось защищать Трампа
10:51
Зарядите мои «Искандеры»
00:11
Россия должна вернуть Украине ядерный арсенал
00:05
Этот день в истории - 20 Октября
21:44
Северная Корея нацелилась на создание подводных атомных крейсеров
21:42
Скандальное расследование ФБР о связях Клинтон с Кремлем
21:41
США обвинили Дамаск и всех союзников в попытках помешать освобождению Ракки от ИГИЛ
21:39
Конгресс США признал, что Порошенко захватил власть на Украине
21:37
«Русские сильно опережают американцев в игре в прятки…» Советская Россия глазами индийца
21:34
Что случилось с «крышей» Муженко?
21:32
Европа не признает независимость Каталонии
21:11
Длинная тень Януковича над Киевом
21:10
Перераспределяя ресурсы: почему Пентагон предлагает сократить количество военных баз США в мире
Все новости

Архив публикаций

«    Октябрь 2017    »
ПнВтСрЧтПтСбВс
 1
2345678
9101112131415
16171819202122
23242526272829
3031 


» » Лазер позволил ученым получить сверхпроводник, работающий при комнатной температуре

Лазер позволил ученым получить сверхпроводник, работающий при комнатной температуре

Сверхпроводимость


Сверхпроводимость - это одно из самых загадочных, замечательных и перспективных явлений. Сверхпроводящие материалы, не имеющие электрического сопротивления, могут проводить ток практически без потерь, и это явление уже используется в практических целях в некоторых областях, к примеру, в магнитах установок ядерной томографии или ускорителей частиц. Однако, существующие сверхпроводящие материалы для того, чтобы обрести свои свойства, должны быть охлаждены до крайне низких температур. Но эксперименты, проведенные учеными в течение этого и прошлого года, привели к получению некоторых неожиданных результатов, которые могут изменить положение, в котором находятся сейчас технологии использования сверхпроводников.

Международная группа ученых, возглавляемая учеными из института Структуры и динамики материи Макса Планка (Max Planck Institute for the Structure and Dynamics of Matter), работая с одним из самых перспективных материалов - высокотемпературным сверхпроводником окисью меди-бария-иттрия (YBa2Cu3O6+x, YBCO), обнаружила, что воздействие на этот керамический материал импульсов света инфракрасного лазера заставляет некоторые атомы этого материала кратковременно изменить свое положение в кристаллической решетке, увеличивая проявление эффекта сверхпроводимости.

Кристаллы соединения YBCO имеют весьма необычную структуру. Снаружи этих кристаллов присутствует слой окиси меди, покрывающий собой промежуточные слои, в которых содержатся барий, иттрий и кислород. Эффект сверхпроводимости при облучении светом лазера возникает именно в верхних слоях окиси меди, в которых происходит интенсивное формирование пар электронов, так называемых пар Купера. Эти пары могут перемещаться между слоями кристалла за счет эффекта туннелирования, и это указывает на квантовую природу наблюдаемых эффектов. И в обычных условиях кристаллы YBCO становятся сверхпроводниками только при температуре, ниже критической точки этого материала.

Структура кристалла YBCO


В экспериментах, проведенных в 2013 году, ученые обнаружили, что освещение кристалла YBCO импульсами мощного инфракрасного лазера заставляет материал кратковременно становиться сверхпроводником и при комнатной температуре. Очевидно, что лазерный свет оказывает влияние на сцепление между слоями материала, хотя механизм этого влияния остается пока еще не до конца ясным. И для выяснения всех подробностей происходящего ученые обратились к возможностям лазера LCLS, самого мощного на сегодняшний день рентгеновского лазера.

"Мы начали "бить" по материалу импульсами инфракрасного света, который возбудил некоторые из атомов, заставив их колебаться с достаточно сильной амплитудой" - рассказывает Роман Манковский (Roman Mankowsky), ученый-физик из института Макса Планка, - "Затем мы использовали импульс рентгеновского лазера, следующий сразу за импульсом инфракрасного лазера, для измерения точного значения смещений, произошедших в кристаллической решетке".

Полученные результаты показали, что импульс инфракрасного света не только возбудил и заставил колебаться атомы, его воздействие привело к смещению из положения в кристаллической решетке. Это сделало на очень кроткое время меньшим расстояние между слоями оксида меди и другими слоями кристалла, что в свою очередь привело к увеличению проявления эффекта квантового сцепления между ними. В результате этого кристалл становится сверхпроводником при комнатной температуре, правда это его состояние способно держаться всего несколько пикосекунд времени.

"Полученные нами результаты позволят нам внести некоторые изменения и усовершенствовать существующую теорию высокотемпературных сверхпроводников. Кроме этого, наши данные окажут неоценимую помощь ученым-материаловедам, разрабатывающим новые высокотемпературные сверхпроводящие материалы, имеющие высокое значение критической температуры" - рассказывает Роман Манковский, - "И, в конечном счете, все это, я надеюсь, приведет к осуществлению мечты о сверхпроводящем материале, работающем при комнатной температуре, который совершенно не нуждается в охлаждении. А появление такого материала, в свою очередь, сможет обеспечить массу прорывов в великом множестве других областей, использующих в своих интересах явление сверхпроводимости".
 

Первоисточник





Опубликовано: legioner     Источник

Похожие публикации


Добавьте комментарий

Новости партнеров

Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Наверх